RIDME spectroscopy on high-spin Mn2+ centers.

نویسندگان

  • D Akhmetzyanov
  • H Y V Ching
  • V Denysenkov
  • P Demay-Drouhard
  • H C Bertrand
  • L C Tabares
  • C Policar
  • T F Prisner
  • S Un
چکیده

Pulsed EPR dipolar spectroscopy is a powerful tool for determining the structure and conformational dynamics of biological macromolecules, as it allows precise measurements of distances in the range of 1.5-10 nm. Utilization of high-spin Mn2+ species as spin probes for distance measurements is of significant interest, because they are biologically compatible and endogenous in numerous biological systems. However, to date dipolar spectroscopy experiments with this kind of species have been underexplored. Here we present pulsed electron electron double resonance (PELDOR also called DEER) and relaxation-induced dipolar modulation enhancement (RIDME) experiments, which have been performed at W-band (94 GHz) and J-band frequencies (263 GHz) on a bis-MnDOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) model system. The distances obtained from these experiments are in good agreement with predictions. RIDME experiments reveal a significantly higher modulation depth compared to PELDOR, which is an important consideration for biological samples. These experiments also feature higher harmonics of the dipolar coupling frequency due to effective multiple-quantum relaxation of high-spin Mn2+ as well as the multiple-component background function. Harmonics of the dipolar coupling frequency were taken into account by including additional terms in the kernel function of Tikhonov regularization analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIDME distance measurements using Gd(iii) tags with a narrow central transition.

Methods based on pulse electron paramagnetic resonance allow measurement of the electron-electron dipolar coupling between two spin labels. Here we compare the most popular technique, Double Electron-Electron Resonance (DEER or PELDOR), with the dead-time free 5-pulse Relaxation-Induced Dipolar Modulation Enhancement (RIDME) method for Gd(iii)-Gd(iii) distance measurements at W-band (94.9 GHz, ...

متن کامل

Monitoring Complex Formation by Relaxation‐Induced Pulse Electron Paramagnetic Resonance Distance Measurements

Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation-induced dipolar modulation enhancement) technique offers improved sensitivity in di...

متن کامل

Mn2+-Nitrogen Interactions in RNA Probed by Electron Spin-Echo Envelope Modulation Spectroscopy: Application to the Hammerhead Ribozyme

We report application of electron spin-echo envelope modulation (ESEEM) spectroscopy to the problem of metal coordination environments in structured RNA molecules. ESEEM has been used in conjunction with 15N-guanosine labeling to identify nitrogen ligation to a Mn2+ site in a hammerhead ribozyme and in Mn2+-model guanosine monophosphate (GMP) complexes. Hammerhead ribozyme complexes consisting ...

متن کامل

Pulsed Electron Paramagnetic Resonance Study of Domain Docking in Neuronal Nitric Oxide Synthase: The Calmodulin and Output State Perspective

The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investiga...

متن کامل

Estimation of the distance between the divalent cation binding site of des-1-41-light chain-activated bovine plasma protein C and a nitroxide spin label attached to the active-site serine residue.

The paramagnetic effect of Mn2+ on the electron paramagnetic resonance spectrum of a nitroxide spin label covalently attached to the active-site serine residue of des-1-41-light chain bovine plasma-activated protein C, and situated at a distance of approximately 1.2 nm from this amino acid, has been utilized to estimate the distance on the enzyme surface between the single Mn2+ site and the fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 44  شماره 

صفحات  -

تاریخ انتشار 2016